NOTES ON COBORDISM THEORY

by Robert E. Stong

Mathematical Notes, Princeton University Press

1968

A Detailed Table of Contents

compiled by Peter Landweber and Doug Ravenel in November, 2007

based on decades of careful reading

Chapter I. Introduction–Cobordism Categories	1
Cobordism categories	3
Relative cobordism	9

Chapter II. Manifolds with Structure – the Pontrjagin-Thom theorem	14
(B, f) structures	14-16
Generalized Pontrjagin-Thom theorem	18-23
Tangential structures, sequences of maps, ring structure, relative groups	23-26

Chapter III. Characteristic Classes and Numbers	27
Spectra	27
Ring spectra	28
Thom class	29
Fundamental class	30
Characteristic class, characteristic number	31
Orientation and Thom isomorphism	36
Atiyah duality	37
Alexander and Spanier-Whitehead duality	39

Chapter IV. The Interesting Examples – A Survey of the Literature	40
Example 1: Framed cobordism \(\Omega^* \)	40
Example 2: Unoriented cobordism \(\Omega \)	40
Example 3: Complex cobordism \(\Omega^U \)	41
Example 4: Oriented cobordism \(\Omega^{SO} \)	42
Example 5: \(w_1 \) spherical cobordism \(\mathcal{W}_* \)	43
Example 6: Bordism \(\Omega_*(B, f)[X, A] \)	43
Example 7: Special unitary cobordism \(\Omega_*^{SU} \)	44
Example 8: \(c_1 \) spherical cobordism \(\mathcal{W}_U \)	45
Example 9: Spin cobordism \(\Omega_*^{Spin} \)	46
Example 10: Spin\(^c\) cobordism \(\Omega_*^{Spin c} \), etc.	47
Example 11: Complex-Spin cobordism \(\Omega_*^{c-S} \)	48
Example 12: Symplectic cobordism \(\Omega_*^{Sp} \)	48
Fifteen more examples and two pseudoeexamples	48-58

Chapter V. Cohomology of Classifying Spaces	59
Vector bundles	59
Definition of characteristic classes	61
Splitting lemma	65
Thom spaces	66
Ordinary cohomology of Grassmannians	69
Relationship between fields	73
Characteristic numbers of manifolds (projective spaces, Milnor hypersurfaces)	75
Cohomology of BO and BSO	81
Chapter X. Special Unitary Cobordism

- Structure of $\Omega^*_{SU} \otimes \mathbb{Q}$... 238
- Torsion in Ω^*_{SU} is 2-primary ... 239
- Construction of SU-manifolds with certain characteristic numbers 239
- $\Omega^*_{SU} \otimes \mathbb{Z}[\frac{1}{2}]$ is polynomial .. 242
- All torsion in Ω^*_{SU} has order 2 ... 243
- Torsion in Ω^*_{SU} ... 248
- KO-theory characteristic numbers ... 249
- Chern numbers of SU-manifolds ... 255
- Ω^*_{SU} is determined by integral cohomology and KO characteristic numbers 261
- Product in $\mathcal{W}_*(\mathbb{C}, 2)$... 262
- Relation to framed cobordism ... 267
- Relation to complex cobordism ... 273
- Relation to unoriented cobordism .. 276
- Relation to oriented cobordism ... 278

Chapter XI. Spin, Spinc, and Similar Nonsense ... 283

- Clifford algebra Cliff(V) ... 285
- Spin(k), Spinc(k) ... 287
- Pin(k), Pinc(k) ... 289
- $H^*(BSpin; \mathbb{Z}_2)$... 292
- Connective covers of BO and BU .. 295
- Filtration of KO$^*(X)$ and K$^*(X)$.. 302
- Isomorphic homologies ... 308
- 2-primary analysis of MSpin and MSpinc .. 319
- Structure of Ω^*_{Spin}, $\Omega^*_{Spin^c}$.. 336
- KO-theory and mod 2 cohomology characteristic numbers determine Ω^*_{Spin} 337
- Ordinary (\mathbb{Q}, \mathbb{Z}_2) cohomology characteristic numbers determine $\Omega^*_{Spin^c}$ 337
- Basis for $\Omega^*_{Spin} \otimes \mathbb{Z}_2$... 339
- $\Omega^*_{Spin} \otimes \mathbb{Z}_2$ is polynomial .. 348
- Relation to framed cobordism ... 350
- Relation to unoriented cobordism .. 350
- Relation to oriented cobordism .. 351
- Relation to complex cobordism .. 353
- Relation of Spin and Spinc ... 354

Appendix 1. Advanced Calculus (23 pages)

Appendix 2. Differential Topology (25 pages)

Bibliography (142 items, 8 pages)